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Relativistic superfluid vortices and Helmholz’s theorem 

Uri Ben-Ya’acovt 
International Solvay Institutes for Physics and Chemistry. Campus Plaine-CP 231, Universit6 
Libre de Bruxelles, Boulevard du Triomphe, B-1050 Bmsels, Belgium 

Received 9 September 1993, in final form 30 March 1994 

Abstract. The dynamics of relativistic quantum vortices were recently analysed in a model 
based an the nonlinear wave equation for a complex scalar field, These results are presented 
here in the context of relativistic pure supemuids and the existence of the correct non-relativistic 
limit is verified. Relativistic superRuid vottices are essentially different f” their Newtonian 
limit-theit equation of mohon contains an acceleration term. absent in non-relativistic vortex 
dynamics. Still. it is shown that under cemin conditions, the relativistic Euler equation and 
Helmholz’s theorem are obtained as limiting cases. 

1. Introduction 

It is well known from the classical theory of vortices in fluids that the dynamics of vortices 
are determined by the Helmholz theorem [1,2]. This theorem, which in turn follows from 
the Euler equation for the fluid in which the vortices appear, states that the velocity of 
a vortex is equal to the local velocity of the fluid at the vortex. So far, it is generally 
accepted that Helmholz’s theorem applies to all types of vortices. In this statement, isolated 
as well as non-isolated vortices are included, in spite of the singularities that characterize the 
velocity and vorticity fields in the first case. Since the Helmholz theorem emerged as part 
of Newtonian fluid mechanics, it is natural to question its validity for vortices in relativistic 
fluids, especially since the transformation laws for the velocities in relativistic dynamics are 
quite different from those in Newtonian dynamics. 

Relativistic vortices have rarely been studied in the literature. Lund and Regge [3] 
introduced the relation between relativistic superfluid (isolated) vortices and the K a l b  
Ramond interstring interaction [4]. Their result, however, ignored the fact that the relativistic 
(four-vector) velocity field of the fluid must be time-like and the KaIbRamond or Biot- 
Savart-like expression for the velocity field should, thus, be modified [S, 61. Several years 
later, Rothen [7] studied the vortices that appear in the core of a neutron star in a relativistic 
hydrodynamical model. Only in recent years did the theoretical similarity between superfluid 
vortices and global cosmic strings cause further interest in relativistic superfluid vortices 
[5,6,8-12]. 

This similarity (like the theoretical similarity between quantized magnetic flux tubes in 
superconductors and local cosmic strings [13]) naturally brought up the questions: what are 
the common features of the apparently very different types of quantum vortex phenomena 
and how deep can we go in identifying common features? 

To answer this question, a common relativistic version of the Ginzburg-Landau- 
Abrikosov-Pitaevskii models was recently studied [6, IO] by the present author. Its basic 
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underlying concept is that a complex (Lorentz scalar) function # ( x ) ,  describing the ground 
state of the quantum fluid and being defined over the whole Minkowski spacetime, contains 
the full details of the history and evolution of the vortex system, in that asymptotically 
far from the vortices, #(x) describes the medium in which the vortices appear, while the 
centres of the vortices are ZD time-like manifolds on which # ( x )  vanishes. 

Through analysis of the #(x)-field equation near a vortex, and there making use of the 
analytical properties of the solution, the exact equations of motion of any general vortex 
system described by # ( x )  were found [lo, 1 I]. These equations of motion. being Lorentz 
covariant, are essentially different from the non-relativistic equations of motion of isolated 
or superfluid vortices [1,14-16] in some respects: first, the relativistic equations of motion 
depend on the acceleration of the vortices, similar to particles and in distinct contrast to the 
case of non-relativistic vortices, whose equations of motion depend on their velocity done 
(this could also be anticipated from application of Lorentz symmetry to the dependence of the 
phenomenological equations of motion 1151 on the curvature of the vortices. which contain 
a second-order differential operator along the spatial direction of the vortex). Second, the 
field # ( x ) ,  being a complex function, implies the existence of hvo scalar potentials with 
which vortices interact. Writing # ( x )  as 

these two potentials are represented by the generalized velocity potential or phase function 
p(x) and another field @(x), 

While the role of the phase function, or the generalized velocity potential rp(x), is 
well known in vortex dynamics, the assignment of an independent dynamical role to the 
potential @(I) [lo] is new. Since it is essentially different from zero only in the region of 
the vortex core where it leads to a very short-ranged attractive force, this role has so far 
been ignored. However, @ ( x )  diverges on the vortices' core (@(x) 3 CO) and it is @ ( x )  
that carries the nonlinear aspects of vortex dynamics (this holds for relativistic as well as 
non-relativistic vortices). In fact, the nonlinearity of vortex dynamics, manifested through 
the potential @ ( x ) ,  has far reaching consequences. First, although the two fields (rp(x) and 
@ ( x ) )  lead, separately, to diverging self-interactions of vortices, these divergences always 
cancel each other, leaving an automatically regularized self-interaction in the equation of 
motion [IO, 121. The nonlinearity also implies a relation between boundary conditions (the 
asymptotic behaviour of the medium) and the dynamics of the vortex sources, where the 
regularization of the self-interaction is fully determined by the theory: the cut-off parameter 
used to regularize self-interactions is not arbitrary. or ad hoc [15,17], but explicitly given 
in terms of parameters of the model [IZ]. Also, since the incompressibility assumption 
is inacceptable for relativistic vortices [6], it implies that @ ( x ) ,  varying with the density, 
cannot be ignored in a relativistic model (recent work on propagation of small disturbances 
in a relativistic superfluid shows that @ ( x )  canies the massive modes, as in spontaneous 
symmetry breaking, a purely relativistic effect [IS]). Due to its importance in the region 
of the vortices' core, the field @ ( x )  is expected to play an important role in the theoretical 
explanation of the intercommuting interchange of vortices. 

Since the model is non-dissipative, a complete action integral, which is valid near the 
vortices' cores as well, was found [lo, 111 from which the vortices' equations of motion, 
as well as the p(x) and @ ( x )  field equations (with the vortices as singular sources), can 
all be derived for arbitrary vortex configurations. This action provides a unified model 
in which different types of quantum vortices are described. The differences between 
different types of vortices (namely, superhid vortices, cosmic strings, etc) are wholly 



Relativistic superfluid vortices 7167 

contained in a set of parameters pertaining to the medium in which the vortices appear, not 
to the vortex phenomena. The bare string tension (the analogue of a particle's mass) is 
identified and determined for all types of vortices, as well as the coupling constant of the 
vortices to the field corresponding to the generalized velocity potential. It is found that the 
ratio @are string tension)/(vortex coupling constant) is always equal to h 1  (the winding 
direction of the vortex) irrespective of the other parameters of the vortex. These results 
are interpreted as evidence for the actual existence, though directly unseen, of elementary 
vortices as the building blocks of all types of quantum vortices [lo]. 

This model has been presented so far fully within the context of relativistic field theory. 
A necessary consistency check for any relativistic theory is that it yields the correct non- 
relativistic limit. Since cosmic strings appear only with respect to a Lorentz invariant 
vacuum, the non-relativistic limit can be checked only in the case of vortices in a material 
medium, namely, superfluid vortices. Since critical velocities in He11 are much lower than 
the velocity of light, we do not expect to see relativistic experimental laboratory effects 
on Earth, but the relativistic analysis may well be valid for vortices in neutron stars. The 
present paper has, thus, two main objectives: first, to present the general model in terms 
corresponding to (relativistic) superfluids; and second, to study the conditions under which 
the relativistic equation of motion of the vortices reduces to the familiar Euler equation and 
the statement of the Helmholz theorem. In the following, we therefore relate (section 2) 
our field model with the hydrodynamic description of a pure superfluid at T = 0 K and, in 
sections 3 and 4, two results are shown: (i) under certain conditions the relativistic Euler 
equation is obtained, and (ii) the usual equation of motion of non-relativistic vortices is 
obtained in the limit c + W. Thus, the relation with the well known non-relativistic vortex 
dynamics is established. 

2 Dynamirs of relativistic superfluids with vortices 

For the description of relativistic superfluid vortices, the medium in which the vortices 
appear is described by a complex scalar field @(x) in a Minkowski spacetime M .  In terms 
of the superfluid, and in analogy with the non-relativistic models [19], this field is expected 
to describe the superfluid phase in the T = 0 limit without normal excitations. The metric in 
M is g,, = diag(-1, 1. 1, 1) and the scalar product of two vectors is given by a,b@ = a .b. 

In our model [6, 101, the field @ ( x )  satisfies the generic field equation 

V2@ = U'(1@I2)@ (2.1) 

where U(]@[') is a potential function that depends on the structure of the fluid and is 
related (see equation (2.10) below) to its equation of state. In the absence of vortices, or 
asymptotically away from them (assuming no net vorticity at infinity), and in the absence 
of any other disturbance, the field must have the very simple form 

with a constant vector V,. 

characterize the @-field. Writing the field as 
The meaning of this vector is obtained from the dynamical quantities and relations that 

@ ( x )  = I@(x)leip'x) 



7168 U Ben-Ya’acov 

the dynamics of the field imply two conserved quantities: the number-of-particles current 

n’(x) = 21~(x1I2v”(x1 (2.3) 

and the energy-momentum tensor 

T P ” ( X )  = 214(x)l~”I@(x)l~” + zl44x)l2v(X)”lo(x)~” 

- [l@(x)PI@(X)l,A + I@(x)12v”x)4?A(x) + U(l@12)] g””. 

Substituting the asymptotic field (2.2) into the field equation (2.1) yields the condition 

(2.4) 

V’V’ +U‘(&) = 0 (2.51 

and equations (2.3) and (2.4) yield the expressions 

Comparing these expression with the standard form of the particles’ current and the energy- 
momentum tensor of an ideal fluid in equilibrium [Z] 

implies first that V’ is proportional to the fluid‘s velocity U’ 

V’ = PO. U: (2.8) 

(the subscript zero refers to the constant values pertaining to the asymptotic homogeneous 
medium). The proportionality constant is determined by equation (2.5) 

KO ’ -U‘ - (4 02), (2.9) 

The particles’ density, pressure and the energy density are then given by [ZO, 211 

(2.10) 

Equation (2.10) is the equation of state of the fluid, parametrized by &Oz. Since all the three 
state functions n,  e and p depend on only one parameter. this model necessarily refers to a 
T = 0 K situation. 

From equations (2.9) and (2.10), it is easy to show the existence of the standard 
thermodynamic relations at zero temperature (referring to $0 as a variable) 

(2.11) 
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These relations verify that w g  is the (relativistic) chemical potential of the fluid [22]. 
Let us now introduce voltices into the superfluid and see how the foregoing pure 

hydrodynamical picture is affected. In the presence of vortices, the field (2.2) characterizes 
the background medium with respect to which the vortices appear. It may, therefore, be 
considered as the asymptotic form of $ ( x ) ,  away from the vortices, while in the vortex 
region it should be multiplied by a proper vortex part to give $ ( x )  

$ ( x )  = he”*q(x) .  (2.12) 

The vortex part IV(x) vanishes on the vortices and lrYl + 1, V[arg(Y)] + 0 asymptotically. 
Comparing with equation (l,l), Q ( x )  is given by 

q(x )  = e-r”(x) , ei[(o(r)-V.xl, (2.13) 

The asymptotic conditions in a vortex system (assuming no propagation of disturbances to 
infinity) are therefore Vpp(x) -+ V& and @ ( x )  + 0 away from the vortices and @ ( x )  -+ w 
on the vortices’ world sheets. 

In the presence of vortices (or in general, whenever I$ (x ) l  is not constant) the particles’ 
flow and the enern-momentum flow are no longer parallel and the particles’ current (2.3) 
and energy-momentum tensor (2.4) cannot be brought to the equilibrium form (2.7). There 
is, therefore, a deviation from the pure hydrodynamical picture, just as in the non-relativistic 
case [23]. and the superfluid cannot be regarded as being in thermal equilibrium, not 
even locally. Out of equilibrium, the definition of the rest frame of the fluid and the 
thermodynamic functions is not unique [24]. Since we consider superfluids, it is possible 
in the present case to use the irrotationality condition in relativistic ideal fluids [2,25] 

( w W L l  - (PUS),” = 0 (2.14) 

and make the identification 

I L ( x ) U p ( x )  3 P,p(X). (2.15) 

Instead of equation (2.9), the chemical potential is now determined by the real part of 
equation (2.1) 

(2.16) 

The particles’ current and their density are consequently determined from equations (2.3) 
and (2.15) 

1 

141 
p y x )  = -[Vp(x)l~ =U’(l$lZ) - -VZI@I. 

n’(x) = n ( x ) U p ( x )  n ( x )  = 2fi(x)1$(x)I’. (2.17) 

Since ~ ( x )  and n(x)  depend not only on 141 but also on its first and second gradients, 
relations (2.1 I )  cannot be fulfilled. The determination of pressure and energy density is less 
clear. It is possible, as an example, to define 

E ( X )  = T#”U”U” = ;wn tU(l4lZ) +2(Vl@l‘ U)* t (Vl@lY 

p(x)  = : ( E  t TL) = i p n  -U(IGI’) t ~ ( V I @ I  (1)’ - ;(VI@I)’. 
(2.18) 
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Clearly, this is not the only option. However, the explicit form of the thermodynamic 
functions is not necessary in the following. 

Consider now an arbitrary system of vortices embedded in the superfluid. A single 
isolated vortex is characterized by (i) the ZD time-like connected manifold (called the 
vortex’s world sheet) xJ’ = f J ’ ( C ” ) ,  = 0, 1,2,3, a = 0,1, on which the centre of 
the vortex moves in Minkowski spacetime, which satisfies the equation @[x = t(5)] = 0; 
and (ii) the value of the contour-independent line integral $dp = 2 n ~  around it, where 
cp(x) = arg[@(x)] is the multivalrled phase function and K is the integer-valued winding 
number. Also, asymptotically, away from the vortices, I@(x) l  + $0 = constant. The 
dynamics of such systems, when the medium described by @ ( x )  satisfies equation (Zl), is 
analysed in [lo, 1 I] where it is shown that an arbitrary system of vortices is completely 
described by the following set of equations. 

(i) The exact equation of motion of each single vortex (with winding number K and 
world sheet xJ’ = e”(<)) 

- p o  lo - - --E v + 2@,v(g’” - Y L l b ~ $ c ~ )  (2.19) 

where yob = gP&c,: is the induced metric on the world sheet, V’” = f ic ,$( ,L&“* is 
the unit antisymmetric tensor tangent to the world sheet and 8’ = -do = 1 .  The vertical 
bar indicates covariant differentiation on the world sheet. 

The LHS of equation (2.19) is the external curvature of the vortex’s world sheet in 
the 4D Minkowski spacetime [26] and being a second-order differential operator (on c”(()), 
including the time-like direction, is a generalized acceleration. Thus, the equation determines 
the vortex’s external geometry, including its motion in spacetime, The vector fields rp.@(x) 
and @ + ( x )  are computed on the world sheet. A highly important property of this equation 
is that although p.”(x) and @ + ( x )  are, separately, singular on the vortex, they are combined 
in equation (2.19) in such a way that the singulaities cancel and the RHS is regular on the 
vortex, 

A particular aspect of this equation is the relativistic Magnus force. If we substitute 
instead of p*’(x) and @J”x) their asymptotic values (i.e. focus on the effect of the fluid 
and ignore the contributions of all the other vortices, boundaries, etc), we get 

IKI 

K - p 7  1. - - - l K , E  P ” A , V ” ~ ” .  (2.20) 

The RHS represents the interaction of the vortex with the medium in which it appears. This 
interaction vanishes only if V” is tangental to the vortex’s world sheet. 

It is also interesting to note that the structure of the superfluid, encompassed in the 
potential U(l@l*), is not manifested at all in the vortices’ equation of motion. The vortices 
are influenced by the details of the structure of the supemuid only through the field equation 
of @ ( x ) ,  equation (2.22) below. 

(ii) The rp-field equation (circulation condition) 

(2.21) 

Here, the sum is over all the vortices cF(C“) with winding numbers ~ i ,  d C ”  being the 
directed surface element on the ith vortex’s world sheet. &,,vi,, is the fully antisymmehic 
unit pseudo-tensor with EOIU = 1 .  
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(iii) The @-field equation 

Comparing equations (2.21) and (2 .23,  the vortices are antisymmetric tensorial sources for 
the rp-field, but scalar sources for the $-field. 

Together, all these equations are derivable from a common action integral. The proper 
canonical field variable [I 11, instead of rp(x), is an antisymmetric tensor field A,,, satisfying 

(2.23) 

The principle that governs this relation is that the LHS is the conserved number-of-particles 
current, the conservation being automatically ensured by the structure of the RHS. The action 
that describes an arbitrary vortex system with winding numbers ~i and world sheets t i ( < )  
in an ideal superfluid is then [lo, 111 

In a real fluid, this action should be introduced as the vortices' contribution. In the 
following, we concentrate on equation (2.19) as describing the dynamics of vortices in 
an ideal superhid. 

3. Isolated agaimt non-isolated vortices and the relativistic Euler equation 

Before discussing the limits of equation (2.19), we pause to stress the distinction between 
isolated and non-isolated vortices, which is particularly explicit in the relativistic regime. 
Non-isolated vortices are classically defined in a medium in which the vorticity field 
w(t, z) = V x v(t, z) is regular and non-vanishing, at least in some parts of the fluid, and 
the Euler equation is of the form [ 1,2] 

6(t, z)(t, 2) + (v( t ,  z) . V)v(t ,  z) = - O F @ ,  2). (3.1) 

The continuous non-isolated vortices are then defined as the integral lines of w(t, m) in 
the regions where w(t,m) does not vanish. As a consequence of equation (3.1), these 
lines move together with the fluid. This is essentially the Helmholz theorem. It also 
holds in a relativistic (possibly rotational) fluid, where, corresponding to equation (3.1). the 
equation [2,25] 

W,"U" = 0 (3.2) 

is the vorticity tensor, where u p  is the four-velocity field and wPv = ($uU),, - ( @ U J , ~  
(11 is the relativistic chemical potential). We define [27] the dual vorticity tensor as 

(3.3) *w@u = 1 PAP - 2& WAp. 
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Then, at each point where *wK” # 0, (3.3) defines a ZD pIane spanned by *we”. 
Equation (3.2) then yields 

(3.4) * ev A-0 
EI”!Jip w - 

which implies that the fluid’s velocity up lies in this plane. The vortices are then defined 
as the integral 3 manifolds of *we”,  i.e. the 2D manifolds whose tangent space at each 
point coincides with the 2D plane spanned by ‘wfi”. The fluid’s velocity is then tangent 
at any point to the vortices which, therefore, move with the fluid. The Helmholz theorem 
extends, therefore, to relativistic non-isolated vortices. This result was used by Rothen [5] 
for vortices in the core of neutron stars. 

The application of the Helmholz theorem for isolated vortices presents a completely 
different picture. These are defined, in multiply-connected irrotational fluids containing 
contours unshrinkable to a point, as the lines (closed or infinitely long) where the velocity 
field is not defined. Since the velocity field is not defined at the location of the vortex, and 
in the near vicinity of the vortex the fluid rotates around the vortex rather than moving with 
respect to it, the assertion of the Helmholz theorem presents a rather obscure statement for 
isolated vortices. 

In classical vortex dynamics, it is assumed that isolated vortices can be obtained by a 
limiting process from non-isolated vortices. Th is  limiting process then leads to the Biot- 
Savart-like formula for the fluid’s velocity field, which in turn determines, via the Helmholz 
theorem, the dynamics of the vortices [1,15]. Direct extension of the classical approach for 
relativistic vortices leads to contradictions: the relativistic Biot-Savart-like velocity field 
for the fluid [3] fails to comply with the requirements of relativistic dynamics because it 
is space-like rather than time-like [5 .6 ] .  The correction of the incompatibility requires the 
introduction of another field, related to the density of the fluid [6]. The theory presented in 
the previous section encompasses, in a self-contained way, the concept of isolated vortices, 
their dynamics and interactions through fields that correspond to the fluid’s velocity field 
and the density-related field. It is, thus, considered to properly describe the dynamics of 
isolated relativistic vortices. In the following, we show that under proper conditions, the 
relativistic Euler equation (3.4) and the non-relativistic Helmholz theorem are obtained. 

To obtain the limits of equation (2.19), particular paramettizations of the world sheet 
need to be used. For the reduction to the relativistic Euler equation, it is convenient to 
describe a vortex’s world sheet using a conformally flat paramehization x K  = cP(r, a), 
satisfying the conditions 

U . U = o  (3.5) 

where at each point of the world sheet the tangent plane is spanned by U” = ifi and 
U& = 6”’ (a dot denotes differentiation with respect to the time-like parameter r and the 
prime denotes differentiation with respect to U). h(r,  a) is a function that depends on the 
intrinsic curvature of the vortex world sheet. In this parametrization, the equation of motion 
(2.19) is 

1 
C2 
-U. = -U. U = - e W d  

Assume now that the curvature of the vortex can be ignored so that the term U; may 
be dropped. Also, assume that the vortices are far enough so that their contribution to $b is 
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small and can be dropped as well. The only contribution of I) comes from regularizing the 
singular part in CO.’, denoting the regularized vector as [(DIG. Finally, for a non-relativistic 
motion, the acceleration term, being divided by c2, can also be ignored. What is left is the 
condition 

&p.Ap[(ol”u*u~ = 0. (3.7) 

Following the discussion in section 2, the velocity field of the fluid cannot be uniquely 
defined near the vortex and the definition becomes more ambiguous as one approaches the 
vortex. Since, asymptotically, ‘p’” is proportional to the velocity of the background fluid, 
we can consider the vector [p]’ as being proportional to the average fluid’s velocity field 
in the neighbourhood of the vortex. The vectors u p  and U’ span the tangent plane to the 
world sheet. Thus, equation (3.7) is of the form of the relativistic Euler equation (3.4) with 
the same content: stating that the fluid’s regularized four-velocity must be tangent to the 
vortex’s world sheet. This is exactly the Helmholz theorem. In this form, equation (3.7) 
suits a situation in which the vortices move slowly, but the medium requires an otherwise 
relativistic description, such as in strong gravitational fields. 

4. Equations of motion in the non-relativistic l i t  

If the medium is also Newtonian, the full limit of equation (2.19) for c -+ 00 can be taken. 
In this case, it is convenient to use a different parametrization, which follows from the 
fact that any 2~ world sheet can be represented in any Lorentz frame in a parametrization 
x’ = 5” = ( t ,  ~ ( t ,  u)) satisfying - €,* = D. ~n this paramehization, the metric on the 
world sheet is 

d s 2 = - ~ 2 A 2 ( t , ~ ) d t 2 + B Z ( t , u ) d u Z  A Z ( f , o ) =  1 - + [  ’ BZ(t,LT) = IE,.[2 
C2 

(4.1) 

so that the generalized acceleration is 

We now substitute (4.2) in the spatial components of equation (2.19). Assuming the 
motion of the vortices to be slow, all the time derivatives which are divided by cz can be 
ignored in the limit c + 00. The remaining expression is 

2K 
~€,ol-’(l€,ul-l€~),,? t ~ I € . o l - ’  (vv - Fi) x €,c t Z[V@ - l € , J 2 ( € , m  ’ VI)l€,u) = 0 

(4.3) 

from which, by re-ordering, we get 
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Unless the vortices are close to each other, the role of the V@ term is merely to regularize 
the self-interaction included in the first term. The regularized self-interaction is proportional 
to the curvature [l2], yielding 

Here, [lp] is the contribution to the phase function from all the other vortices and the 
homogeneous background superfluid and LY is a positive dimensionless coefficient that 
depends on the sfxucture of the vortex. Substituting (4.5) back into equation (4.4) finally 
gives 

which is the conventional fundamental formula for the velocity of non-relativistic vortices 
[14-161, composed of the velocity due to all the rest of the system plus a term and derived 
from the regularization of the self-interaction, which can be combined with the Iordanskii 
force [16]. Thus, the correct non-relativistic limit of our model equation (2.19) has been 
verified. 

The automatic self-regularization coefficient a is given, approximately, by [I21 

(4.7) 

where R, is a typical radius of curvature of the vortex and c is a cut-off parameter. So 
far, in regularizing the self-interaction of the vortices, the cut-off parameter 6 has had to be 
introduced by hand [15,17]. Here, however, due to the self-regularization by V@ in (4.5), 
the theory provides [12] the exact relation between E and the so-called ‘healing length’ a 
[16] derived from the theory 

with quantities E, defined by 

(4.9) 

where the functions f K ( x )  are the field-amplitude profile for cylindrically symmetric vortices 
with field 

4 = ~ o e - i ~ ~ * ~ k ( r ) e i K a  (4.10) 

satisfying the equation 

(4.1 1 )  

In particular, for large vortex rings with I K I  = 1, one obtains [12] E - 2 . 5 ~ ~ .  This result 
explains the similar ratios found beinreen the measured core radii and healing lengths 1161. 
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5. Discussion 

Relativistic vortex dynamics are distinguished by the appearance of an acceleration term in 
the equation of motion (equation (2.19)) in a very similar way to the equations of motion 
for point particles. This term is entirely a relativistic effect, as is evident from the fact that 
it vanishes in the limit c -+ W. Its appearance, however, is necessary to ensure Lorentz 
covariance of vortex dynamics if the equation of motion is to include a spatial curvature term 
[ 151, because the acceleration and the spatial cuvature together form a Lorentz covariant 
quantity. 

The relativistic dynamics of isolated quantum vortices was found here to reduce to the 
Eulerian picture of continuous vorticity when the vortices are far enough from each other 
so that their curvature (including acceleration) can be ignored. Classical vortex dynamics, 
including Helmholz’s theorem, are recovered when the vortices are far enough from each 
other and their curvatures are not too large, so that their motion is non-relativistic in the 
sense that time derivatives which are of order O(c-*), including the acceleration term, can 
be ignored. 

The equation of motion (2.19) was derived in [lo, 111 from a relativistic field theory, 
which describes the medium in which the vortices appear, that is based essentially on a 
nonlinear wave equation in a complex scalar field. Application of the same method to 
vortex systems described via the nonlinear Schrodinger equation yields the corresponding 
non-relativistic limit equation (4.3). The difference between this equation and other vortex 
dynamics that were obtained from the nonlinear SchrMinger equation [28] is that this 
equation (as is equation (2.19)) is exact within the context of its field model, while all 
the other approaches introduce approximations to obtain the equation of motion. These 
approximations are unnecessary, as an exact equation is available. They also eliminate the 
possibility of seeing features of the exact dynamics, especially those that are related to the 
existence of the @-field, such as the automatic self-regularization of the self-interaction (this 
argument applies also to Neu’s approach to the nonlinear wave equation [29]). 

The present model concerns vortices in an ideal superfluid where the medium is 
otherwise inert and homogeneous. More realistic relativistic superfluids (without vortices) 
have been discussed in the literature in the last decade [30]. The combination of these models 
is expected to provide a more realistic model of relativistic superfluids with vortices. 
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