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Relativistic superfluid vortices and Helmholz’s theorem

Uri Ben-Ya'acovi
International Solvay Institutes for Physics and Chemistry, Campus Plaine-CP 231, Université
Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium

Received 9 September 1993, in final form 30 March 1994

Abstract. The dynamics of relativistic quantum vortices were recently analysed in 2 model
based on the nonlinear wave equation for a complex scalar field, These results are presented
here in the context of relativistic pure superfluids and the existence of the correct non-relativistic
fimit is verified. Relativistic superfluid vortices are essentiatly different from their Newtonian
limit—their equation of motion contains an acceleration term, absent in non-relativistic vortex
dynamics. Still, it is shown that under certain conditions, the relativistic Euler equation and
Helmholz’s theorem are obtained as limiting cases.

1. Introduction

It is well known from the classical theory of vortices in fluids that the dynamics of vortices
are determined by the Helmholz theorem [1,2]. This theorem, which in turn follows from
the Euler equation for the fluid in which the vortices appear, states that the velocity of
a vortex is equal to the local velocity of the fluid at the vortex, So far, it is generally
accepted that Helmholz's theorem applies to all types of vortices. In this statement, isolated
as well as non-isolated vortices are included, in spite of the singularities that characterize the
velocity and vorticity fields in the first case. Since the Helmholz theorem emerged as part
of Newtonian fluid mechanics, it is natural to question its validity for vortices in relativistic
fluids, especially since the transformation laws for the velocities in relativistic dynamics are
quite different from those in Newtonian dynamics.

Relativistic vortices have rarely been studied in the literature. Lund and Regge {3]
introduced the relation between relativistic superfluid (isolated) vortices and the Kalb—
Ramond interstring interaction [4]. Their result, however, ignored the fact that the relattvistic
{four-vector) velocity field of the fluid must be time-like and the Kaib—Ramond or Biot—
Savart-like expression for the velocity field should, thus, be modified [5, 6]. Several years
later, Rothen [7] studied the vortices that appear in the core of a neutron star in a relativistic
hydrodynamical model. Only in recent years did the theoretical similarity between superfluid
vortices and global cosmic strings cause further interest in relativistic superfluid vortices
[5.6,8-12].

This similarity (like the theoretical similarity between quantized magnetic flux tubes in
superconductors and local cosmic strings [13]) naturally brought up the questions: what are
the common features of the apparently very different types of quantum vortex phenomena
and how deep can we go in identifying common features?

To answer this question, a ¢common relativistic version of the Ginzburg-Landau-
Abrikosov—Pitaevskii models was recently studied [6, 10] by the present author. Its basic
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underlying concept is that a complex (Lorentz scalar) function ¢{x), describing the ground
state of the quantum fluid and being defined over the whole Minkowski spacetime, contains
the fuli details of the history and evolution of the vortex system, in that asymptotically
far from the vortices, ¢(x) describes the medium in which the vortices appear, while the
centres of the vortices are 2D time-like manifolds on which ¢(x) vanishes,

Through analysis of the ¢(x)-field equation near a vortex, and there making use of the
analytical properties of the solution, the exact equations of motion of any general vortex
system described by ¢ (x) were found [10, 11]1. These equations of motion, being Lorentz
covariant, are essentially different from the non-relativistic equations of motion of isolated
or superfluid vortices [1, 14-16] in some respects: first, the relativistic equations of motion
depend on the acceleration of the vortices, similar to particles and in distinct contrast to the
case of non-relativistic vortices, whose equations of motion depend on their velocity alone
(this could also be anticipated from application of Lorentz symmetry to the dependence of the
phenomenological equations of motion [15] on the curvature of the vortices, which contain
a second-order differential operator along the spatial direction of the vortex). Second, the
field ¢(x), being a complex function, implies the existence of twe scalar potentials with
which vortices interact. Writing ¢(x) as

¢(x) = [¢(x)]e*™ |(x)] = goe™¥¢ (L1}

these two potentials are represented by the generalized velocity potential or phase function
(x) and another field 1 (x).

While the role of the phasa function, or the generalized velocity potential @(x), is
well known in vortex dynamics, the assignment of an independent dynamical role to the
potential ¥{x) {10} is new. Since it is essentially different from zero only in the region of
the vortex core where it leads to a very short-ranged attractive force, this role has so far
been ignored. However, 1 (x) diverges on the vortices’ core (¥ (x) — oo) and it is ¥ (x)
that carries the nonlinear aspects of vortex dynamics (this holds for relativistic as well as
non-relativistic vortices). In fact, the nonlinearity of vortex dynamics, manifested through
the potential y{x), has far reaching consequences. First, although the two fields (¢{x) and
¥ (x)) lead, separately, to diverging seif-interactions of vortices, these divergences always
cancel each other, leaving an automaticaily reguiarized self-interaction in the equation of
mofion [10, 12]. The nonlinearity also implies a relation between boundary conditions (the
asymptotic behaviour of the medium) and the dynamics of the vortex sources, where the
regularization of the self-interaction is fully determined by the theory: the cut-off parameter
used to regularize self-interactions is not arbitrary, or ad hec [15,17], but explicitly given
in terms of parameters of the model [12]. Also, since the incompressibility assumption
is inacceptable for relativistic vortices [6], it implies that +(x), varying with the density,
cannot be ignored in a relativistic model {recent work on propagation of small disturbances
in a relativistic superfluid shows that y(x) carries the massive modes, as in spontaneous
symmetry breaking, a purely relativistic effect [18]). Due to its importance in the region
of the vortices’ core, the field ¢ (x) is expected to play an important role in the theoretical
explanation of the intercommuting interchange of vortices.

Since the model is non-dissipative, a complete action integral, which is valid near the
vortices’ cores as well, was found [10, 11] from which the vortices’ equations of motion,
as well as the ¢(x) and ¥(x) field equations (with the vortices as singular sources), can
all be derived for arbitrary vortex configurations. This action provides a unified model
in which different types of quantum vortices are described. The differences between
different types of vortices (namely, superfluid vortices, cosmic strings, etc) are wholly
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contained in & set of parameters pertaining to the medium in which the vortices appear, not
to the vortex phenomena. The bare string tension (the analogue of a particle’s mass) is
identified and determined for all types of vortices, as well as the coupling constant of the
vortices to the fleld corresponding to the generalized velocity potential. It is found that the
ratio (bare string tension)/(vortex coupling constant) is always equal to X1 (the winding
direction of the vortex) irrespective of the other parameters of the vortex. These resulis
are interpreted as evidence for the actual existence, though directly unseen, of elementary
vortices as the building blocks of all types of quantum vortices [10].

This model has been presented so far fully within the context of relativistic field theory.
A necessary consistency check for any relativistic theory is that it yields the correct non-
relativistic limit. Since cosmic strings appear only with respect to a Lorentz invariant
vacuoum, the non-relativistic limit can be checked only in the case of vortices in a material
medium, namely, superfluid vortices. Since critical velocities in Hell are much lower than
the velacity of light, we do not expect to see relativistic experimental laboratory effects
on Earth, but the relativistic analysis may well be valid for vortices in neutron stars. The
present paper has, thus, two main objectives: first, to present the general model in terms
corresponding to (relativistic) superfluids; and second, to study the conditions under which
the relativistic equation of motion of the vortices reduces to the familiar Euler equation and
the statement of the Helmbolz theorem. In the following, we therefore relate (section 2)
our field model with the hydrodynamic description of a pure superfluid at 7 = 0 K and, in
sections 3 and 4, two results are shown: (i) under certain conditions the relativistic Euler
equation is obtained; and (ii} the usual equation of motion of non-relativistic vortices is
obtained in the limit ¢ — co. Thus, the relation with the well known non-relativistic vortex
dynamics is established.

2. Dynamics of relativistic superfluids with vortices

For the description of relativistic superfluid vortices, the medium in which the vortices

appear is described by a complex scalar field ¢{x) in a Minkowski spacetime M. In terms

of the superfluid, and in analogy with the non-relativistic models [19], this field is expected

to describe the superfluid phase in the T = 0 limit without normal excitations. The metric in

M is guy = diag(—1, 1, 1, 1) and the scalar product of two vectors is given by a,b% = a-b.
In our model [6, 10], the field ¢ (x) satisfies the generic field equation

Vi =U'(l¢1))¢ (2.1)

where {(J¢|?) is a potential function that depends on the structure of the fluid and is
related (see equation (2.10) below) to its equation of state. In the absence of vortices, or
asymptotically away from them (assuming no net vorticity at infinity), and in the absence
of any other disturbance, the field must have the very simple form

B (x) = ghoe'" ™ 22

with a constant vector V.
The meaning of this vector is obtained from the dynamical quantities and relations that
characterize the ¢-field. Writing the field as

P(x) = |p(x)|e'™
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the dynamics of the field imply two conserved quantities: the number-of-particles current
n*(x) = 2|¢(x) e (x) (2.3)
and the energy-momentum tensor
TH(x) = 26 ()1 #1 (0] + 21 () Po(x) #o(x)"
~ [I0CI* B0 a + 1) Po* ()0 () + USR] 8. (2.4)
Substituting the asymptotic field (2.2} into the field equation (2.1) yields the condition
V,VE+ U (o?) =0 (2.5)
and equations (2.3) and (2.4) yield the expressions
n# = 2’ V¥
(2.6)
TH =240 V¥ VY — [’V V) + U(de™)] 8.

Comparing these expression with the standard form of the particles’ current and the energy—
momentum tensor of an ideal fluid in equilibrium [2]

pt=n-U*
@
T# = (e + pyU*U" + p - g™
implies first that V# is proportional to the fluid’s velocity U*
VE = po- U§ (2.8)

(the subscript zero refers to the constant values pertaining to the asymptotic homogeneous
medium). The proportionality constant is determined by equation (2.5)

Ho® = U'(90"). (29)
The particles’ density, pressure and the energy density are then given by [20, 21]

no = 2¢0° to(do’)
€0 = ¢ U (¢o”) + U(do?) (2.10)
Po = ¢o”U' ($o%) — U(o®).

Equation (2.10) is the equation of state of the fluid, parametrized by 2. Since all the three
state functions », € and p depend on only one parameter, this model necessarily refers to a
T =0 K situation.

From equations (2.9) and (2.10), it is easy to show the existence of the standard
thermodynamic relations at zero temperature (referring to ¢ as a variable)

deg = podng @1
€ + po = Moo,
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These relations verify that gg is the {relativistic) chemical potential of the fluid [22].

Let us now introduce vortices into the superfluid and see how the foregoing pure
hydrodynamical picture is affected. In the presence of vortices, the field (2.2) characterizes
the background medium with respect to which the vortices appear. It may, therefore, be
considered as the asymptotic form of ¢(x), away from the vortices, while in the vortex
region it should be multiplied by a proper vortex part to give ¢(x)

& (x) = doe!’ *W(x). (2.12)

The vortex part W(x) vanishes on the vortices and || — 1, V[arg(¥)] — 0 asymptotically.
Comparing with equation (1.1}, ¥(x) is given by

W(x) = e~V . leCI=Vx] (2.13)

The asymptotic conditions in a vortex system (assuming no propagation of disturbances to
infinity) are therefore V,¢(x) = V), and ¥ (x) — 0 away from the vortices and ¥ (x) — o0
on the vortices’ world sheets.

In the presence of vortices (or in general, whenever {¢(x}] is not constant) the particles’
flow and the energy-momentum flow are no longer parallel and the particles’ current (2.3)
and energy—momentum tensor (2.4) cannot be brought to the equilibrium form (2.7). There
is, therefore, a deviation from the pure hydrodynamical picture, just as in the non-relativistic
case [23], and the superfluid cannot be regarded as being in thermal equilibrium, not
even locally. Out of equilibrium, the definition of the rest frame of the fluid and the
thermodynamic functions is not unique [24]. Since we consider superfluids, it is possible
in the present case to use the irrotationality condition in relativistic ideal fluids [2, 25]

Wlp)p — (ulUy),, =0 (2.14)
and make the identification
(XU (x) = ¢, (x). (2.15)

Instead of equation (2.9), the chemical potential is now determined by the real part of
equation (2.1)

K = VG = U o) = el @.16)

The particles’ cuirent and their density are consequently determined from eguations (2.3)
and (2.15)

nH(x) =n(x)U"(x)  nlx)=2px)le ()% (2.17)

Since p(x) and n(x) depend not only on [¢[ but also on its first and second gradients,
relations (2.11) cannot be fulfilled. The determination of pressure and energy density is less
clear. 1t is possible, as an example, to define

€(x) = T, UFUY = Lun + U913 + 2(V|¢] - U) + (V|¢])?

(2.18)
p(x) = §(e + T2 = jun — U9/ + 2(VIg| - UY: - L(VIgI)Y.
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Clearly, this is not the only option. However, the explicit form of the thermodynamic
functions is not necessary in the following,

Consider now an arbitrary system of vortices embedded in the superfluid. A single
isolated vortex is characterized by (i} the 2D time-like connected manifold (called the
vortex’s world sheet) x* = &%), . = 0,1,2,3, a = 0,1, on which the centre of
the vortex moves in Minkowski spacetime, which satisfies the equation ¢[x = £(¢£}] = 0;
and (ii) the value of the contour-independent line integral ¢ dp = 2m« around it, where
o(x) = argl¢p(x)] is the multivalued phase function and k is the integer-valued winding
number. Also, asymptotically, away from the vortices, [¢{x)] — ¢ = constant. The
dynamics of such systems, when the mediuvm described by ¢ (x) satisfies equation (2.1}, is
analysed in [10,11] where it is shown that an arbitrary system of vortices is completely
described by the following set of equations.

(i) The exact equation of motion of each single vortex (with winding number & and
world sheet x* = E*({))

K
~ £ = e g B 2, — y e @.19)

where Yap = guvéiaé’, is the induced metric on the world sheet, B# = /—pEhE}e® is
the unit antisymmetric tensor tangent to the world sheet and £ = —¢'? = 1, The vertical
bar indicates covariant differentiation on the world sheet.

The LHS of equation (2.19) is the external curvature of the vortex’s world sheet in
the 4D Minkowski spacetime [26] and being a second-order differential operator (on £#(¢)),
including the time-like direction, is a generalized acceleration. Thus, the equation determines
the vortex’s external geometry, including its motion in spacetime. The vector flelds @*(x)
and ¥#(x) are computed on the world sheet. A highly important property of this equation
is that although ¢#(x} and yr#{x) are, separately, singular on the vortex, they are combined
in equation (2.19) in such a way that the singularities cancel and the RHS is regular on the
vortex.

A particular aspect of this equation is the relativistic Magnus force. If we substitute
instead of ¢#(x) and ¥*{x) their asymptotic values (i.e. focus on the effect of the fluid
and ignore the contributions of all the other vortices, boundaries, etc), we get

—gHe = %s"‘v;_pV"E""’. (2.20)
The RHS represents the interaction of the vortex with the medium in which it appears. This
interaction vanishes only if V¥ is tangental to the vortex’s world sheet.

It is also interesting to note that the structure of the superfluid, encompassed in the
potential 2{(|¢|?), is not manifested at all in the vortices’ equation of motion. The vortices
are infloenced by the details of the structare of the superfluid only through the field equation
of ¥(x), equation (2.22} below.

(if) The @-field equation (circulation condition)

@ada = Qo =7 Y s, [ [ 840 - )4z, @.21)

Here, the sum is over all the vortices & (£%) with winding numbers «;, dT/" being the
directed surface element on the ith vortex’s world sheet. &,,,, is the fully antisymmetric
unit pseudo-tensor with gpa3 = 1.
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(iii) The yr-field equation
V= A UG = —prp, = 3 2l [ [ 64 - gy az .22

Comparing equations (2.21) and (2.22), the vortices are antisymmetric tensorial sources for
the p-field, but scalar sources for the -field.

Together, all these equations are derivable from a common action integral. The proper
canonical field variable [11}, instead of ¢(x), is an antisymmetric tensor field A, satisfying

26"2'}'@'“ = LeH A, = —Lgmviemr
2 e 3 wip 2.23)
Hyvn = Agon + Avap + Asg o

The principle that governs this relation is that the LHS is the conserved number-of-particles
current, the conservation being automatically ensured by the structure of the RHS. The action
that describes an arbitrary vortex system with winding numbers «; and world sheets &;(¢)
in an ideal superfluid is then [10, 11]

$=2me¢3 ) [ — |k, ff eV GE, + & ff 1A ) dzg“]
2
— f [%ew vk Hyo + ¢§e“‘2¢’w'”¢‘u + M(¢§e‘2‘”):| d*x. (2.24)

In a real fluid, this action should be introduced as the vortices’ contribution. In the
following, we concentrate on equation (2.19) as describing the dynamics of vortices in
an ideal superfluid.

3. Isolated against non-isolated vortices and the refativistic Euler equation

Before discussing the limits of equation (2.19), we pause to stress the distinction between
isolated and non-isclated vortices, which is particularly explicit in the relativistic regime.
Non-isolated vortices are classically defined in a medium in which the vorticity field
w(t, ) = V x v, ) is regular and non-vanishing, at least in some parts of the fluid, and
the Euler eguation is of the form [1, 2]

v, ), ) + (wit, x) - Vivit, x) = -V u(t, x). 3.1

The continuous non-isolated vortices are then defined as the integral lines of w(f, 2} in
the regions where w{z, ) does not vanish. As a consequence of equaticn (3.1}, these
lines move together with the fluid. This is essentially the Helmholz theorem. It also
holds in a relativistic (possibly rotational) fluid, where, corresponding to equation (3.1), the
equation [2,25]

Wy’ =0 (32

is the vorticity tensor, where u# is the four-velocity field and wy, = (¥u,) . — (Yuu),
(1 is the relativistic chemical potential). We define [27] the dual vorticity tensor as

A
*aphl = ]EE,'J-U pwlp' (3.3)
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Then, at each point where *w#’ $ 0, (3.3) defines a 2D plane spanned by *w*'.
Equation (3.2) then yields

3uuAp*qu“'\ =0 (3.4)

which implies that the fluid’s velocity & les in this plane. The vortices are then defined
as the integral 2b manifolds of *w*”, i.e. the 2D manifolds whose tangent space at each
point coincides with the 2D plane spanned by *w#*, The fluid’s velocity is then tangent
at any point to the vortices which, therefore, move with the fluid. The Helmholz theorem
extends, therefore, to relativistic non-isolated vortices. This result was used by Rothen [5]
for vortices in the core of neutron stars.

The application of the Helmholz theorem for isolated vortices presents a completely
different picture. These are defined, in multiply-connected irrotational fluids containing
contours unshrinkable to a point, as the lines (closed or infinitely long) where the velocity
field is not defined, Since the velocity field is not defined at the location of the vortex, and
in the near vicinity of the vortex the fluid rotates around the vortex rather than moving with
respect to it, the assertion of the Helmholz theorem presents a rather obscure statement for
isolated vortices.

In classical vortex dynamics, it is assumed that isolated vortices can be obtained by a
limiting process from non-isolated vortices. This limiting process then leads to the Biot—
Savart-like formula for the fluid’s velocity field, which in turn determines, via the Helmholz
theorem, the dynamics of the vortices [1, 15]. Direct extension of the classical approach for
relativistic vortices leads to contradictions: the relativistic Biot-Savart-like velocity field
for the fluid [3] fails to comply with the requirements of relativistic dynamics because it
is space-like rather than time-like [5,6]. The correction of the incompatibility requires the
introduction of another field, related to the density of the fluid [6]. The theory presented in
the previous section encompasses, in a self-contained way, the concept of isolated vortices,
their dynamics and interactions through fields that correspond to the fluid’s velocity field
and the density-related field. It is, thus, considered to properly describe the dynamics of
isolated relativistic vortices. In the following, we show that under proper conditions, the
relativistic Euler equation (3.4) and the non-relativistic Helmholz theorem are obtained.

To obtain the limits of equation (2.19), particular parametrizations of the world sheet
need to be used. For the reduction to the relativistic Euler equation, it is convenient to
describe a vortex’s world sheet using a conformally flat parametrization x* = £*(z, o),
satisfying the conditions

1
—u-u=—p.p= -9

2 v-v=>0 3.5

¢
where at each point of the world sheet the tangent plane is spanned by u# = £# and
v# = £# (a dot denotes differentiation with respect to the time-like parameter © and the
prime denotes differentiation with respect to ). A(r, ¢) is a function that depends on the
intrinsic curvature of the vortex world sheet. In this parametrization, the equation of motion
2.19) is

1 2K 1
;fz“ —- ), = I—K—Iswkpga'”u*v" + 29, [eﬂ"'“)é‘; + C—zu,,,u" - u,uv”} . (3.6)

Assume now that the curvature of the vortex can be ignored so that the term v, may
be dropped. Also, assume that the vortices are far enough so that their contribution to ¥ is
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small and can be dropped as weil. The only contribution of ¥ comes from regularizing the
singular part in ¢#, denoting the regularized vector as [¢]“. Finally, for a non-relativistic
motion, the acceleration term, being divided by ¢?, can also be ignored. What is left is the
condition

Eawple]’u*v? = 0. 3.7

Following the discussion in section 2, the velocity field of the fluid cannot be uniquely
defined near the vortex and the definition becomes more ambiguous as one approaches the
vortex. Since, asymptotically, ¢# is proportional to the velocity of the background fluid,
we can consider the vector [¢]# as being proportional to the average fluid’s velocity field
in the neighbourhood of the vortex. The vectors #* and v* span the tangent plane to the
world sheet, Thus, equation (3.7) is of the form of the relativistic Euler equation (3.4} with
the same content; stating that the fluid’s regularized four-velocity must be tangent to the
vortex’s world sheet. This is exactly the Helrholz theorem. In this form, equation (3.7)
suits a situation in which the vortices move slowly, but the medium requires an otherwise
relativistic description, such as in strong gravitational fields.

4. Equations of motion in the non-relativistic limit

If the medium is also Newtonian, the full limit of equation (2.19) for ¢ — oc can be taken.
In this case, it is convenient to use a different parametrization, which follows from the
fact that any 2D world sheet can be represented in any Lorentz frame in a parametrization
x#* = g = (¢, £(1, o)) satisfying £ - £, = 0. In this parametrization, the metric on the
world sheet is

i = ~24,0) 4P+ B0 de? Aoy =1- P B0 = I, L
“.n
so that the generalized acceleration is

1 A
~ ghl, _E[(CzAé.#) (EE",v) ]=‘|£.ar1(£.a|-’£“,,),a+0(c‘2)- 4.2)

We now subsiitute (4.2) in the spatial components of equation (2.19). Assuming the
motion of the vortices to be slow, all the time derivatives which are divided by ¢? can be
ignored in the limit ¢ — oc. The remaining expression is

ol 10 I7E5),0 +ﬁ|£ o7 (Vo= 2€) x 60+ 2UVY — oG - VYEL) = O
(4.3)

from which, by re-ordering, we get

. /] h
E=nx [V (f) Xn+ mlfclvw P ||€ ol” no':] n=lgel"E, (4.4)
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Unless the vortices are close to each other, the role of the Vv term is merely to regularize
the self~interaction included in the first term. The regularized self-interaction is proportional
to the curvature [12], yielding

[ng - %V:,[r x n] xn=Vg] xn+ laxlfq| " n. (4.5)
ey

Here, [} is the contribution to the phase function from all the other vortices and the
homogeneous background superfluid and o is a positive dimensionless coefficient that
depends on the structure of the vortex, Substituting (4.5) back into equation (4.4) finally
gives

- alel hx _
E=nx [V (——n;—) xn+ :?—n.z_]—fc—](l + |rele) € o 'n,a] (4.6)

which is the conventional fundamental formula for the velocity of non-relativistic vortices
[14-16], composed of the velocity due to all the rest of the system plus a term and derived
from the regularization of the self-interaction, which can be combined with the Iordanskii
force [16]. Thus, the correct non-relativistic limit of our model equation {2.19) has been
verified.

The automatic self-regularization coefficient o i1s given, approximately, by [12]

«~n (&) @7
£

where R, is a typical radius of curvature of the vortex and e is a cut-off parameter. So
far, in regularizing the self-interaction of the vortices, the cut-off parameter € has had to be
introduced by hand [15, 17]. Here, however, due to the self-regularization by V1 in (4.5),
the theory provides [12] the exact relation between ¢ and the go-called ‘healing length’ a
[16] derived from the theory

I =05-In2+ KL% 4.8)
a K
with quantities &, defined by
. ' w2 K s 2
& = lim f (fY + 5" | xdx —«"lar (4.9)
o0 0 X

where the functions f, (x) are the field-amplitude profile for cylindrically symmetric vortices
with field

& = Poe M £ (r)e? (4.10)
satisfying the equation
2z
12 (x 4 ) — b= G ) — Ve @.11)

In particular, for large vortex rings with |«] = 1, one obtains [12] € ~ 2.5a. This result
explains the similar ratios found between the measured core radii and healing lengths [16].
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5. Discussion

Relativistic vortex dynamics are distinguished by the appearance of an acceleration term in
the equation of motion (equation (2.19)) in a very similar way to the equations of motion
for point particles. This term is entirely a relativistic effect, as is evident from the fact that
it vanishes in the limit ¢ — oc. Its appearance, however, is necessary to ensure Lorentz
covariance of vortex dynamics if the equation of motion is to include a spatial curvature term
[15], because the acceleration and the spatial curvature together form a Lorentz covariant
quantity.

The relativistic dynamics of isolated quantum vortices was found here to reduce to the
Eulerian picture of continuous vorticity when the vortices are far enough from each other
$0 that their curvature (including acceleration) can be ignored. Classical vortex dynamics,
including Helmholz's theorem, are recovered when the vortices are far enough from each
other and their curvatures are not too large, so that their motion is non-relativistic in the
sense that time derivatives which are of order O(¢~2), including the acceleration term, can
be ignored.

The equation of motion (2.19) was derived in [10, 11] from a relativistic field theory,
which describes the medium in which the vortices appear, that is based essentially on a
nonlinear wave equation in a complex scalar field. Application of the same method to
vortex systems described via the nonlinear Schridinger equation yields the corresponding
non-relativistic limit equation (4.3). The difference between this equation and other vortex
dynamics that were obtained from the nonlinear Schrédinger equation [28] is that this
equation (as is equation (2.19)) is exact within the context of its field model, while all
the other approaches introduce approximations to obtain the equation of motion. These
approximations are unnecessary, as an exact equation is available. They also eliminate the
possibility of seeing features of the exact dynamics, especially those that are related to the
existence of the ¥ -field, such as the automatic self-regularization of the self-interaction (this
argument applies also to Neu's approach to the nonlinear wave equation [29]).

The present model concerns vortices in an ideal superfluid where the medium is
otherwise inert and homogeneous. More realistic relativistic superfluids (without vortices)
have been discussed in the literature in the last decade [30]. The combination of these models
is expected to provide a more realistic model of relativistic superfluids with vortices.
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